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Abstract. We describe first results from a numerical two-fluid MHD model of the

global structure of the solar corona. The model is two-fluid in the sense that it accounts

for the collisional energy exchange between protons and electrons. As in our single-fluid

model, volumetric hea_ and momentum sources are required to produce high speed

wind from coronal holes, low speed wind above streamers, and mass fluxes similar to

the empirical solar wind. By specifying different proton and electron heating functions

we obtain a high proton temperature in the coronal hole and a relatively low proton

temperature in the streamer (in comparison with the electron temperature). This is

consistent with inferences from SOHO/UVCS [Feldman et al., 1977; Kohl et at., 1997],

and with the Ulysses/SWOOPS proton and electron temperature measurements which

_,,_ :_!:,:_,,_,":.c_J:_l"_.=__':_ _.atitude scan. The density in the coronal hole between 2 solar

radii and 5 solar radii (2Rs and 5Rs) is similar to the density reported from SPARTAN

201-01 measurements by Fisher and Guhathakurta [1994]. The proton mass flux scaled

to 1 AU is 2.4 x 10Scm-2s -1, which is consistent with Ulysses observations [Phillips

et al., 1995]. Inside the closed field region, the density is sufficiently high so that the

simulation gives equal proton and electron temperatures due to the high collision rate.

In open field regions (in the coronal hole and above the streamer) the proton and

electron temperatures differ by varying amounts. In the streamer, the temperature and

density are similar to those reported empirically by Li et al. [1998] and the plasma/_ is

larger than unity everywhere above ,-, 1.5 Rs, as it is in all other MHD coronal streamer

models [e.g. Steinolfson et at., 1982; Gary and Alexander, 1998].



1. Introduction

Sturrock and Hartle [1966] and Hartle and Sturrock [1968] were the first to show

that the collisional energy exchange rate is too low to justify a single-fluid description

of the solar wind. They gave a quantitative demonstration of this by analyzing the

necessary condition, i.e. that the electron-proton collision frequency VE be substantially

greater than the expansion rate _,_w [Spitzer, 1962; Braginskii, 1965]. Outside a few

solar radii the expansion rate may be estimated by the approximate expression:

2v
, xp -- (1)

r

where v issolarwind speed and r isheliocentricdistance.The electron-proton collision

frequency uE [B,rag_ns]_i-i, 1965] is _ven by

vE _ 9 x lO-2nTe -3/2 (2)

where n is the number density of electrons (or protons) and T_ is the electron

temperature. They estimated u__._ and vE by using typical solar wind parameters at 1

AU to show that single-fluid theories of the solar wind axe not adequate to describe the

relative proton and electron temperatures. This early analysis appears to be essentially

valid in light of all modern data. In spite of this, no published MHD global model

incorporates two-fluid equations into a global description of the corona to demonstrate

the transition between collisionally dominated coupling in streamers to collisional

decoupling in coronal holes. With the advent of SOHO/UVCS, there is growing evidence

that collisional effects are indeed important in the origin of slow solar wind and that

the dominance of coUisional processes differs between the edge and center of streamers

[Raymond et al., 1997; Li et al., 1998]. Raymond et al. [1997] further find that streamers

axe surprisingly isothermal between the base of the streamer and --, 1.5 Rs. We describe

here first results from a two-fluid model, showing that it can be used to analyze some of

these problems and processes and reproduces such critical empirical results as a nearly



isothermal streamer. As in our one-fluid model [Wang et al., 1998], volumetric heat

and momentum sources are required to produce high speed wind from coronal holes,

low speed wind above streamers, and mass fluxes similar to the empirical solar wind.

The necessity for these source terms is easily understood since there is no explicit wave

term in our equations and thus no explicit mechanism to produce high speed wind.

Conversely, the physical mechanisms heating and accelerating the solar wind must

produce the same consequences as our ad hoc source terms.

Although we only carry our calculation to 10 Rs, it is consistent with interplanetary

observations of the mass flux as extrapolated back to the Sun. We show with

Ulysses/SWOOPS data that it is also consistent with observations that the electron

::::_._: :°_u:_ :_ ;_:_.vci" _n_n the proton temperature in high speed wind and higher

than the proton temperature in slow wind [see also Burlaga and Ogilvie, 1970, 1973;

Hundhausen et al., 1970; Pizzo et al., 1973; Formisano et al., 1974; Neugebauer, 1976;

Feldman et al., 1975, 1976; Hundhausen, 1972]. High speed wind comes from coronal

holes [Hundhausen, 1972] and low speed wind somehow leaks from streamers [Suess et

a/.,1998; Geiss et al., 1995; Sheeley, et al., 1997; Raymond et al., 1997]. Slow wind thus

originates from a collisionally dominated part of the corona and fast wind comes from

the nearly collisionless coronal holes. These conditions result in different temperatures

and temperature histories as the solar wind expands from the Sun.

Our results can be compared with the many one-dimensional (1D) two-fluid models

have been published since that of Hartle and Sturrock [Hattie and Barnes, 1970; Whang,

1972; Hollweg, 1973; Esser, et al., 1986; Habbal, et al., 1995; Hu et al., 1997]. These have

been used to investigate detailed processes in solar wind heating and acceleration. In

doing this, they generally deal with geometrical effects through a "spreading functions"

[Kopp and Holzer, 1977; Suess et al., 1998]. These models can serve to verify the correct

solution has been found in our MHD model and to guide choices for the source terms,

as was done for the terms used here and in Wang et al. [1998].



Tile evaluation of collisional effects in and around a streamer is one of the main

reasons for our development of a two-fluid model and is motivated by results from

SOHO/UVCS. In earlier models [ Wang et al., 1993; Wang et al., 1995; Suess et al., 1996;

Wang et al., 1998] the goal was determination of the boundary conditions and of heating

and momentum sources which produce flow speeds and mass fluxes like those observed

in both the fast and slow solar wind. We use those results here, obtaining a sharp cusp

and low speed solar wind above streamers and high speed wind in coronal holes. This

configuration, and the equivalent configuration in the absence of volumetric heating,

lead to a natural transition between collisionally dominated plasma in the streamer and

essentially collisionless plasma in the coronal hole. This transition is comparable with

h!._ _:",.:_i,_ioa described by Raymond et al. [1998] of the "first ionization potential"

(i:iP) dependence and the dependence of gravitational settling across streamers. They

report that there is a difference between the core of the streamer, where the FIP effect

is strongest, and the flanks of streamers (but, still inside streamers), where the FIP

effect is less pronounced and more like that measured in slow solar wind. Although

the mechanism by which slow solar wind leaks out of streamers is still not understood,

the two-fluid model can be used to evaluate the coupling efficiency between the plasma

components for comparison with the observations.

In section 2, the two-fluid global MHD equations are given and the numerical

method and boundary conditions are described. Section 3 shows results from the

numerical simulation and discusses the important physical processes. Conclusions and

remarks are given in section 4.

2. Mathematical Description and Numerical Procedure

To preserve charge neutrality we assume equal electron and proton number densities

and flow speeds. The MHD equations therefore have one continuity equation, one

momentum equation, one induction equation, and two energy equations (one equation



eachfor electronsand protons). The model is axisymmetricl planar, and time-dependent

with volumetric heating, momentum addition, and classical[Spitzer, 1962]thermal

conduction. The governingequationsin spherical polar coordinatescan be written as

follows:
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where p is the plasma density (p = nrr_); Te and Tp are the electron and proton

temperatures, p is the isotropic pressure; vr and vo are the flow velocities in the radial

direction and meridional direction, Br and Bo are magnetic field intensities in the radial

direction and meridional direction, C. is the specific heat at constant volume for a

monoatomic gas, 7 (adiabatic index) is 5/3, and g is the gravitational acceleration. To

further maintain higher proton temperatures in the coronal hole and higher electron

temperatures in the streamer, Qe and Qp, volumetric heat sources are introduced for

the electrons and protons, defined by

Q_(r,O) = Qo_[1 + 0.25arctan(5(j - 18))]e -°'l(r-Rs)/Rs (11)

Qp(r, O) = f_ P(r' O) [1 - 0.25 arctan(5(/- 18))]e -°I(_-Rs)/Rs (12)

where Q0 is 5 x 10-Serg cm-3s -1, po(O) is the base density, and j is the index of the grid

point in the 0 direction, running from 1 at a polar angle of -2.25 ° to 22 at a polar angle

of 92.25 ° (i.e. 0 = 4.5(j - 1) - 2.25 for j=l to 22). These are similar to those used in

by Wan9 et al. [1998] and although they depend on the density, equations (8) and (9)

show these terms are divided by p so that the heuting is effectively independent of the

ambient medium. The heating term for electrons is larger near the equator than the pole

while the heating term for the protons is larger near the pole than the equator. Also we

assume that in the coronal hole (0 < 65.25 °) and near the solar surface (r < 2Rs) the

proton heating is zero since almost any proton heating near the base of the hole leads

to excessive solar wind mass flux. The variation of these functions with polar angle are

shown in Figure 1.

Finally, q_r, q,0, q_, and q_ are the radial and meridional thermal conduction fluxes

for electrons and protons, which for a Lorentz gas are defined by,

V.q_=V.[r,.p,ITpS/2(B.VTp)_-5] (14)



where B is the magnetic field vector, and _elland npl I are the collisional thermal

conductivities along the magnetic field lines for electrons and protons, respectively, and

given by Spitzer[1962]. D is the momentum source term, defined as in Wang et al.

[1998] to be:

Doa 2

D(r,O) = (r - a) 2 + a 2{1 - 0.25arctan[5(j - 16)]} (15)

where Do = 5 x 103 dyn/g and j(O) is defined the same as in equations (11) and (12).

This produces solar wind speeds similar to empirical values [Phillips, et al., 1995]. We

assume the momentum source is time-stationary, does not depend on ambient plasma

properties, and that it increases in the lower corona and then decreases more rapidly

than the heating term above 7Rs. The position of the maximum value of D(r, 0) is at

a = 3.5As. A detailed discussion of this term is given by Wang eta!. [1995]. Siilce

the deposition height of D(r, O) affects the high speed wind proton mass flux [Leer and

Holzer, 1980; Wang et al., 1998] we have also set D(r, O) equal to zero inside 2Rs for

0 _< 0 _< 65.25 ° (i.e., in the coronal hole), thereby avoiding excessive proton mass flux in

the high speed wind.

There is no physics behind the Q and D source terms. They are based solely

on empirical requirements and the formalism used in earlier models of our own and

others, although some aspects of the functions can be rationalized on a physical basis.

For example, taking Qp > Q, in the coronal holes can be justified by the fact that

waves are observed in the high speed wind and many waves (e.g. ion-cyclotron waves)

dissipate in the heavier particles. That Q, 7t 0 in the coronal holes derives only from

the empirical requirement to avoid a too small T_ [Tu and Marsch, 1997]. There is no

obvious explanation for preferential heating of electrons above streamers, but this is also

an empirical requirement.

The computational domain is in a meridional quadrant from the pole to the equator

in 0 and from the solar surface to 1ORs in the radial direction. The numerical scheme

and the boundary conditions are described by Wu and Wang [1987], Wang et al. [1993]



and Suess et al. [1996]. The only difference here is that at the lower boundary, after

the total temperature of electrons and protons is calculated from the characteristic

equations, we specify either the electron temperature or the proton temperature to

obtain the other temperature from the torn temperature. This is because in the

characteristic equations the proton temperature and the electron temperature are

dependent on each other. In the present simulation the electron temperature is fixed at

the lower boundary during the computation.

3. Simulation Results and Discussion

To test the two-fluid model, we first reproduced the one dimensional two-fluid

model of Hartle and Sturroctc [1968] by deleting the heating and momentum soLlrces

and making the computation only in the radial direction. Then, similar to previous

solar minimum type coronal simulations, we chose an initial (t = 0) state with a

dipole potential magnetic field and an expanding atmosphere. In the initial expanding

atmosphere, T(r, 8) and Tp(r, 8) are initially defined everywhere somewhat arbitrarily,

but guided by empirical results. Then, T_(r, 8) = T(r, 8) - Tp(r, 8) and the momentum

equation is solved for v,.(r, _). This is done separately along each value of//on the grid.

Thus, the t = 0 density, temperature and radial velocity depend on latitude as well as

radius. All other parameters are identical to those used by Wang et al. [1998]. The

density at the last meridional grid point before the equator (87.75 °) on the solar surface

is 1.26 x 108 cm -3. The proton and electron temperatures are 2.15 x 106 K and 1.74 x 106

K, respectively, at the same position. The magnetic field intensity at that point is 1.24

gauss, giving a plasma _ of ,'..0.5. The initial conditions for the flow variables are shown

in Figure 2. This shows that the base density and electron temperature are higher in

the streamer and the proton temperature is lower in the streamer. These differences

generally persist throughout the relaxation, as determined by the compatibility relations

at the boundary [Wang et al., 1998]. However, the flow speed changes both at the base
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and throughout the computational volume, eventually becoming very small in the core

of the streamer, and T_ _ Tp at the base for all 0.

The system rela.xes to a quasi-steady state after 20 hours in physical time, which

is long enough to complete the rapid relaxation phase out to the distance of ,-_ 10 Rs

[Steinolfson, Suess, and Wu, 1982; Suess et al., 1996]. At larger times, the streamer

continues to slowly leak plasma due to the heating near the top of the streamer, where

even without heating fl > > 1. This occurs because the heating increases the temperature

at the top of the streamer until plasma pressure slowly forces open additional field lines

in a process which we call " streamer evaporation." An eventual equilibrium exists

because thermal conduction constitutes a heat sink at the base, but this only occurs

a:)_'r months of time in the present sin-afiacion. Evaporation is therefore a limited

process which produces slow solar wind and slowly reduces the height of the streamer

[Suess et al., 1996]. Heating and momentum sources that depend more strongly on

physical parameters or are confined to very low heights in the streamer may lead to

sporadic releases of slow wind and reclosing of the high streamer, as reported by Sheeley

et al. [1997].

The physical configuration of the magnetic field in the corona after t=20 hours

is shown in Figure 3, where it is seen that the topology is virtually identical to that

found in the one fluid model [Wang et al., 1998]. This is not surprising, since the

topology is dominated by the MHD interaction between the bulk plasma density and the

magnetic field, and should be essentially independent of whether a two-fluid model is

used. A qualification to this might be if the plasma became collisionless in the streamer

which could lead to a difference in thermal pressure relative to a one-fluid model. But

electron-proton decoupling occurs only in the coronal hole at some height above the

base and therefore has little influence on the detailed topology of the streamer. In the

following, all the dependent variables are referenced to the time of 20 hours after the

relaxation begins.



The density and radial velocity versuspolar angleat several radial positions are

shown in Figure 4. From this figure, wenotice somedifferencesbetweenthe two-fluid

model and the one-fluid model, which result mainly from setting the momentum

sourceto zero low in the coronalhole and from slightly different boundary conditions.

Specifically, in the coronal hole the two-fluid density decreasesfaster and the radial

velocity is lower than in the single-fluid model [Wang, et al., 1998]. In the present

simulation, the density falls from -,_ 2.0 x 107 crn -3 at 1Rs to 104 cm -3 at 5.27Rs.

The radial velocity is 5km/s at 1Rs and 455km/s at 5.27Rs. The proton mass flux in

the coronal hole, also at 5.27Rs, but scaled to 1 AU, is ,-- 2.4 × 10 s crn-2s -1. This is

consistent with Ulysses measurements [Phillips et al., 1995].

Figure 5 shows a comparison of the model with various observa_ion_ of the radial

variation of density between 2Rs and 5Rs in coronal holes. The two solid lines are from

the present model, the dot-dashed line is from SPARTAN 201 [Fisher and Guhathakurta,

1994], the dotted line is from Newkirk [1967], and the dashed line is from Munro

and Jackson [1977]. The model density in the coronal hole is almost identical with

density from SPARTAN 201. This agreement is largely dependent on the combination

of boundary conditions and choices for the heating and momentum sources. Other

combinations may provide an equally good agreement but it is not easy to carry out a

comprehensive survey of parameter space. Instead, we expect in the future to try other

combinations based on physical arguments.

The most important result fi'om the two-fluid model is what it predicts for

temperatures as a consequence of collisional energy exchange. Since the energy exchange

rate between electrons and protons is very low almost everywhere in the corona except

in the dense closed field lines region, it is of interest to examine how thermal conduction

and collisions affect the two species. Figure 6 shows the distribution of the electron and

proton temperatures at various heights. The solid line is the electron temperature and

the dotted line is the proton temperature. This should be viewed in comparison with



12

Figure I, which is a plot of tile distribution of heating rates for electrons and protons

versuspolar angle. Also in Figure 6 the data hasbeenfolded over to simulated both

hemispheres.This will facilitate the comparisonbelowwith Ulyssesmeasurements.

The lowest level shownin Figure 6 is 1.16 As, which is the third grid point above

the boundary in the simulation. This curve shows that everywhere in the low corona

the collision rate is high enough to closely couple 7'_ and Tp, in spite of differing heating

functions for protons and electrons. Above this level, the proton temperature is higher

than the electron temperature in the coronal hole due to the higher proton heating rate

and low collision rate. Inside the closed field in the streamer, up to _-. 5.ORs, the high

density and resultant high collision rate cause the electron temperature to be almost the

sar:le as the protoa tcmpc, rature. 'I:t_. elec'trc;_t t,:mpcra_ure then becomes larger than

the proton temperature above the streamer where the collision rate has fallen and the

electron heating is still greater than the proton heating.

Observationally, there is now beginning to be some evidence on the relative values

of proton and electron temperature from SOHO/UVCS line widths [Kohl et at., 1997]

although more detailed analysis and some modeling will be required for accurate

empirical temperature estimates. What has been reported so far is that in coronal

holes UVCS protons have "kinetic temperatures" of several million degrees while some

heavier ions have kinetic temperatures of tens or even hundreds of millions of degrees.

These temperatures are believed to reflect waves and the kinetic temperature is highly

anisotropic, being lower in the radial direction. Nevertheless, indications are that

the proton temperature in coronal holes is higher than the electron temperature at

.., 2 Rs. In addition, Tp may increase between 1.5Rs and 3.ORs. Comparison between

these observations and our model is necessarily very limited since the model does not

explicitly include waves and therefore does not compute the kinetic temperature. We

could nevertheless probably force Tp to increase between 1.5 and 2.ORs by increasing

the amplitude while shortening the scale height of Qp because of the absence of heating
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below2.0Rs. In streamers,the kinetic temperature is more nearly isotropic and there

appearsto be a lessintensewavecontribution sothat the comparisonswith our model

are more viable there. At heliocentric heightsof 1.5Rs in equatorial streamers the

results from UVCS are consistent with a thermal distribution at about 2 x 106 K.

UVCS results from coronal holes have stimulated the development of several 1D

corona flow models incorporating Tp > T_. One such model is that by Hu et al. [1997]

which includes the effects of temperature anisotropies. It features generally higher Tp

than Te, although below 2.0 Rs, Te > Tp. Therefore, it differs from our results in detail.

Such models demonstrate how electrons carry the conduction heat flux in the high speed

wind and show heating is required to keep their temperature relatively high far out into

the interplar:c:c_:;," m_x[ium isce also 't't_ and Marsch, 1997]. Conversely, protons cool

nearly adiabatically in the high speed wind. This also occurs for the temperatures above

the coronal hole in our model since the electrons and protons are essentially collisionless

at this height.

There is very good data on interplanetary proton and electron relative and absolute

temperature variations from Ulysses, showing that Tp > Te in the high speed wind and

that T, > Tp in slow wind. Figure 7 shows Ulysses/SWOOPS measurements during the

fast latitude scan [Phillips et al., 1995], which was the one-year period from September

1994 to July 1995 during which Ulysses swept from 80 ° S heliographic latitude to 80 °

N heliographic latitude. This was effectively at solar sunspot minimum so the corona

was well approximated by the dipole field used in the present simulation. The plotted

temperatures axe one-hour averages. Both the electron and proton data were first sorted

by magnitude and the top 2% were dropped to eliminate the outlying data values that

are all due to evaluation of poorly determined distribution functions. What is left is an

accurate illustration of the actual variance in the temperature data - there is a great

deal of variability from one hour to the next. The figure shows the previously described

relative variation of the electron and proton temperatures in high and low speed wind.



[)lotting the one-houraveragesalso clearly displays the sharp temperature boundary

at the edgeof the high speedflow that is the counterpart of the sharp boundary

in flow speed [McComas et al., 1998]. The temperatures are plotted as measured,

with no adjustment for distance from the Sun, so the apparent latitudinal gradient

in temperature is an illusion of orbital motion rather than a measurement of a real

variation across the coronal hole. Ulysses ranges from less than 1.4 AU at the equator

(perihelion) to more than 2.0 AU at 80 ° latitude. There are also systematic variations

across the coronal holes, but they are much smaller than the variation shown here due

to the changing radius of Ulysses. Although we have not attempted to extrapolate these

temperatures back to the Sun, they have the approximate relative values and absolute

m_,_ni;udes dmt would be expected from the temperatures at 10 I{s shown in Figure 6.

This result was not imposed a priori on the model. Rather, it is a consequence of fitting

the mass flux, coronal temperatures, and flow speeds.

Our two-fluid model simulates the empirical results by using a higher proton than

electron heating rate in the coronal hole and a lower rate in the streamer. For the same

amount of heating of protons in the coronal hole and the electrons in the streamer,

Tp > T_ in the hole while T_ is comparable to, but slightly larger than T_, in the streamer.

This is because in the coronal hole the density is low so the collision rate is low as well

and while the protons gain energy from the heat source, they give little to the electrons.

In the streamer the densities and collision rates are higher. Thus, the electrons gain

energy from the heat source but also transfer some of that energy to the protons. A

consequence of this is the shift with height of the latitude at which T_ = Tp. This point

is used to label the curves in Figure 6, and it clearly moves towards the equator with

increasing height. This is not the same as the width of the streamer because the source

terms and boundary conditions are not physically tied to the streamer geometry in this

simulation. Tying the streamer width, source terms, and boundary conditions more

closely together will be a topic of future work.
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The electron-proton temperature differenceis displayedin Figure 8 as a function

of heliocentric distance, at three different polar angles.The purposeof this figure is to

showthat thesedifferencesbecomenearly independentof radiusat the pole and equator.

Since both temperaturesdecreasewith radius, the relative differenceswill increasewith

radius. This plot illustrates somethingwhich is not easily seenin Figure 6; this is

that the absolute temperature differencein the streameris several tens of thousands

of degrees,which is maskedby the higher absolutetemperature in the streamer. The

heating terms are negligiblenear the outer boundary of the computational domainso it

can be anticipated that carrying the computation to larger radii would showthe proton

temperature decreasing--,adiabatically and the electron temperature decreasing more

slowly.

Figm'e 7 also illustrates that considerable work needs to be done in more closely

associating the source functions with the geometry, here in simulating the sharp

boundary between the high and low speed wind. The present model, with boundary

conditions varying slowly in latitude and source functions that do not depend on the

ambient plasma and magnetic field properties, gives a gradual transition from high

speed to slow wind. Empirically, the boundary between high and low speed flow is

sharp, well defined, and distinct even at large distances from the Sun [McComas et al.,

1998]. The detailed results on this boundary from the Ulysses fast latitude scan provides

ample material to help guide analysis of the conditions in the corona that are required

to produce the interplanetary signature. This is further known to be a boundary which

exists through the corona and down to the photosphere [Geiss et al., 1995]. A model

simulating these properties would be much better for also simulating CMEs since the

propagation characteristics of CMEs across the boundaries of steamers and into coronal

holes depends strongly on the ambient characteristic wave speeds [Steinolfson, 1988].



4. Conclusions and Discussion

The two-fluid MHD coronal model described here has been used to analyze the

efficiency of collision rates in coronal holes and streamers to see if the model is consistent

with solar wind and coronal observations. Since the bulk transfer of momentum and

energy is similar to that in a one-fluid model, the configuration, flow speeds, and

densities are essentially like those in the one-fluid model. This is also reflected in the

values of the plasma fl in the model, which are much smaller than unity in the coronal

hole and larger than unity in the streamer above _ 1.3 Rs. The flow properties are

what would be expected from solar wind observations [Phillips et al., 1995] and the

plasma _ is compatible with empirical estimates in coronal holes [Suess and Smith,

i!)96] _d in streamers [Li et al., 1998].

However, the two-fluid model is also able to show the decoupling of electrons and

protons as slow wind moves away from the Sun above streamers. It also exhibits the

anticipated property that electrons and protons are only very weakly coupled in the

high speed flow in coronal holes, allowing them to maintain different temperatures and

completely different temperature histories.

However, the model has a considerably greater utility than simply evaluating

collision rates. With the additional information on electron and proton temperatures

in coronal holes, in the cores of streamers, in the flanks of streamers, and in the high

and low speed solar wind, this becomes a tool for analyzing the transfer of energy and

momentum to the solar wind, the acceleration of the high speed solar wind, and the

origin of the slow solar wind. For example, Raymond et al. [1997, 1998] and Li et al.

[1998] report that the FIP effect differs between the core and flanks of streamers and

is absent outside the bright boundary of streamers. The FIP effect in the flanks of

streamers is like that in slow wind, while that in the core is greater than the slow wind

and suggests complete gravitational settling. This in turn suggests that the wind on

flanks of streamers is not steady, but rather is disturbed on a time scale comparable to
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the few-day gravitational settling time. Sporadic releases of (slow) solar wind from the

streamers, as reported by Sheeley et al. [1997] could account for this if they came from

the flanks. The evaporation of the streamer that e.-,dsts in this and our earlier models

with volumetric heating, produces such an effectl and other choices for heating and

momentum sources can lead to sporadic, episodic releases of mass from the streamers

instead of the more gradual evaporation that is described here.

The model also contains a signature of the acceleration of the fast solar wind.

The relative temperatures of the electrons and protons in the solar wind is an indirect

indication of the heating and acceleration. But, when combined with information on the

temperatures in coronal holes, a stronger constraint is placed on sources. It is important

to temember that the solution presented here is not unique. Of, her combinations of

boundary conditions, and the radial and meridional dependences of the source functions

will produce similar results at 1 AU or 10 Rs. The sources described in (11), (12), and

(15) contain heating to quite large distances from the Sun and the momentum source

does not depend in any way on the ambient plasma conditions. Utilizing information

on coronal hole temperatures will probably require modifying or relaxing the restrictive

assumptions used in (11), (12), and (15).

Remnant signatures of coronal processes are also contained in the solar wind

plasma distribution functions, and these depend on collision rates in the corona. The

most well known of these is the electron "strahl" that is an excess electron (>_ 100

eV) halo component of the solar wind most closely aligned with the magnetic field.

Strahl-associated suprathermal electrons originate in the inner corona and move freely

out to 1 AU, providing information on the state of the corona [Fitzenreiter, et al., 1998].

The strahl is strongest and narrowest in high speed wind, becoming wider when the

speed is low. The presence of the strahl in high speed wind depends on the history

of the flow, in addition to conditions in the corona. The present two-fluid results are

probably consistent with the strahl observations because the decoupling of electrons
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axld protons in the coronal hole might allow the suprathermal particles to escape, while

collisions between electrons and protons remove the possibility of a strahl forming above

streamers. But it would require detailed analysis to show that a strahl could exist in the

modeled Slow wind.

In the future, this model will also be used to simulate coronal mass ejections

(CMEs). This will permit studies of collisional processes in determining abundance

anomalies in CMEs. However, there remains a great deal to be done in analyzing

quasi-steady flow in order to determine: (a) the properties of streamers and their

stability or meta-stability under varying types of heating, and (b) the relative values of

Tp and T_ at various levels in coronal holes for comparison with UVCS and other SOHO

instrument observations.
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Figure 1. rfhe meridional dependence at r = Rs of the electron and proton volumetric

heating functions, as given by equations (11) and (12). The proton heating function,

(12), is further modified in the simulation to be zero poleward of 62.5 ° and inside 2 Rs

to restrict the mass flux from becoming larger than observed in the solar Wind.

Figure 2. Temperature, density, and flow speed in the initial (t = 0) state. The electron

temperature is shown as a solid line and the proton temperature is shown as a dashed

line.

Figure 3. Magnetic field line topology in the simulation after a relaxation time of 20

hours physical time. This time is long compared to the rapid relaxation phase inside

10 Rs [S_tess et al., 1996]. Beyond this time the solution is quasi-steady, with slow

_':ap<,',';c.'. _:':::_:_the top of the streamer. The topology is like that for the one-fluid

Figure 4. Density and radial flow speed versus polar angle in the simulation, at the

same physical time of 20 hours as in Figure 3.

Figure 5. Density versus height, between 2.0 and 5.0 Re. The two solid lines axe

the model densities at the pole and the equator. This is compared to three measure-

ments made in coronal holes: the dot-dashed line is from SPARTAN 201-01 [Fisher" and

Guhathkurta, 1994], the dotted line is from Newkirk [1967], and the dashed line is from

Munro and Jackson [1977].

Figure 6. Proton and electron temperatures from the simulation, versus polar angle at

several heights between 1.0 and 10.4 Rs. The proton temperatures are the dotted lines

and the electron temperatures axe the solid lines. The radius for each pair of lines is

indicated at the intersection of that pair (e.g. the top two curves are at 1.0 Rs). The

curves have been reflected at the equator, showing the opposite hemisphere, to facilitate

comparison with the Ulysses data shown in Figure 7.



Figure 7. Electron and proton temperature data from Ulysses/SWOOPS (the Ulysses

solar wind plasma instrument) during the fast latitude scan between September 1994

and July 1995. One-hour averages of the temperatures are plotted versus heliographic

latitude, with the highest 2% of both the electron and proton values being dropped due

to their resulting from poorly determined plasma distribution functions. The values are

not scaled with radius.

Figure 8. The electron-proton temperature difference, T_ - Tp, versus radius, at three

different constant polar angles.
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